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Induced Polarization Effects in Coupling

Processes of Waveguide Modes
Eugene O. Kamenetskii

Abstract— An analysis of waveguide problems based on a

solution of full vector-wave equations is very important for
many applications. To solve such problems, a new coupled-mode
method, taking into account the so-called induced polarization

effects, is proposed in this paper. The theory is based on the
spectral method, which makes it possible to analyze correctly
a mode excitation by arbitrary sources with longitudinal com-

ponents. It also takes into consideration singularities caused by

abrupt discontinuities of longitudinal currents. The method may
be a powerful tool for investigation of propagating and evanescent
modes coupling due to both material and geometric effects.

I. INTRODUCTION

A SOLUTION to the excitation problem in waveguides

may be carried out with the so-called projective method,

which employs the basis of normal modes of a regular wave-

guide as a system of trial and weight functions. Such a method

allows us to attract the coupled-mode formalism—a very

powerful tool in the analysis of various waveguide problems

[ 1]-[3]. It has been shown in [4] and [5] for a wide class

of waveguides (double anisotropic nonchiral, isotropic chiral)

that in the presence of longitudinal currents as sources of

excitation, it is more mathematically correct to use the so-

called spectral method rather than the reciprocity relation in the

form used in [1]. In this relation, we essentially apply a system

of mode transverse fields as a system of trial functions and a

%yseme%O*full-%ld*as*~ wemeswe&F’ f-tmctii . on

the other hand, one can obtain the excitation equation on the

basis of a system of mode transverse fields as trial and weight

functions. It enables us to apply correctly the Galerkin method

for the solution of inhomogeneous Maxwell equations [4], [5].

The main inference, which one can conclude from the

theories in [4] and [5], is that the efficiency of excitation is

determined by both the values of transverse currents and the

transverse derivatives of longitudinal currents. Therefore, the

abrupt discontinuities of the longitudinal currents on the wave-

guide cross section cause the excitation by delta functions.

However, as it will be shown below, one can obtain another

approach Without using delta functions. In this approach, we

have two excitation integrals. The first is the integral over

the cross section of excitation region S3 and the second

is the integral over the contour surrounding S3. Two such

approaches are similar to those considered in [6] for the free-

space scattering problem inside as well as outside the source

region.
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In this paper we apply the theory [4], based on the spectral

method, for development of the coupled-mode formalism

by taking induced polarization effects into account. Such

effects are caused by abrupt discontinuities of longitudinal

polarization currents and have to be considered in a large

variety of mode-coupling processes. We will concentrate on

two problems: the coupled-mode theory of parallel dielectric

waveguides and mode coupling in isotropic discretely inho-

mogeneous waveguides. These problems may be indicated in

the following way.

A. Coupled-Mode Theory of Parallel Dielectric Waveguides

In a scope of the so-called improved coupled-mode theory

of parallel dielectric waveguides, some ambiguities concerning

the role of the axial electric field component take place. It gives

different expressions in the theories presented in [7] and [8]

for the coupling coefficients. The discussions in [9] and [1 O]

about the question of what is the best approach (based on the

reciprocity theorem [7] or the variational principle [8]) do not

give us the comprehensive answer. It has been pointed out in

[11] that the vector-formulated improved coupled-mode theory

gives a fundamental error for strongly guiding structures in

the case where fields are not pure TE waves. To disperse of

such a fundamental error, the authors of [12] used the theory
rg1, takino into uo Ilnt the cot-w rtinn fi P1 d 0211 w+ hv ind

polarization charges. The problem, however, is not closed.

Expressing the axial electric field according to [7] is more

mathematically valid than using the field representation in [8]

(this is shown in [1], [4], and [13]), The question, however,

is about the correctness of using the reciprocity theorem for

strongly guiding structures in the case that fields are not pure

TE waves. The problem may be solved on the basis of the

spectral method [4], In this paper we will combine the theories

of [7] and [4] for the analysis of strongly guiding structures,

B. Mode Coupling in Isotropic Discretely

Znhornogeneous Waveguides

The transformation of TE and TM modes into hybrid modes

in isotropic discretely inhomogeneous waveguides (IDIW)

is shown in [ 14]–[ 17]. One of the interesting features of

lossless IDIW is the presence of complex and backward-

wave modes. Such modes can exist in a waveguide with a

dielectric insert as modes of “hybrid-type” [15]–[1 8]. In a

majority of papers devoted to the problem of complex and

backward waves propagation, the spectral domain analysis is

used. Nevertheless, in a number of papers, endeavors were
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made to explain the reasons that result in complex modes

in the spectrum. In [19] and [20], complex waves in IDIW

were predicted by the analysis of symmetry of a characteristic

matrix.

In this paper, we consider the coupling of orthonormal

(TE and TM) propagating and evanescent modes of a hollow

metallic waveguide caused by insertion of a dielectric rod. Our

analysis shows that by taking into account induced polarization

effects, we obtain asymmetrical mode coupling in IDIW.

According to our consideration, some conclusions stating that

complex and backward waves in IDIW occur as a result of

induced polarization effects in mode coupling may be made.

An investigation of mode coupling in IDIW may also

be useful for c~ther waveguide problems. A model of IDIW

structure has been used recently for the analysis of optical

waveguides [21 ]–[23]. It consists of enclosing the waveguide

within a rectangle large enough to ensure that the fields of the

guided modes clf interest are zero at this boundmy. In [21] and

[22] the problem was solved on the basis of the scalar wave

equation, but in [23] the analysis of full vector-wave equation

was made. Optical waveguides, in comparison with millimeter

or submillimetm waveguides, are usually weak guide struc-

tures. Therefore, the scalar solutions may be just as accurate

as the vectorial solutions [24]. Nevertheless, one can see now

a rising interest in optical waveguides with large refractive

index differences concerning both theoretical aspects (mode

solutions for single dielectric waveguide [23] or coupled-mode

formulation for parallel dielectric waveguides [1 1], [12]) and

applied problems for working out high-density integrated pla-

nar lightwave circuits [25]. If a waveguide has large refractive

index differences, a vector solution is necessary. For such a

solution one can use fully numerical finite-element or finite-

difference methods [24]. Another approximate method based

on the Galerkin method is shown in [23].

According tc~the Galerkin method, one expresses the vector

field as series expansions in terms of a complete set of

functions that otherwise may be quite arbitrary [26]. In [23] a

complete orthogonal set of sine functions was used. As another

type of complete orthogonal set, one can use the basic system

(TE and TM modes) of a hollow metallic waveguide and

consider the dielectric insert as some kind of irregularity. In

such a case, the singularity caused by abrupt discontinuities of

the permittivity on boundaries of dielectric insert is described

by the induced polarization effects in the mode-coupling

process. The problem formulated in this paper is similar to the

vector-formulated problem in [23], but instead of two vector-

wave equations (for electric and magnetic fields), we have

only one vectcw equation.

The main goal of this paper is to demonstrate an appreciable

role of induced polarization effects in mode-coupling processes

for a wide class of waveguide problems. The paper may be

conventionally divided into two main parts. The first part

(Sections II, III, and the Mathematical Appendix) represents

the general theory, and the second part (Sections IV, V,

and VI) is devoted to some applications. Some numerical

examples, which are adduced for a rectangular waveguide with

a dielectric insert, enable estimating the importance of taking

into account induced polarization effects in the mode coupling.

II. EXCITATION OF PROPAGATING AND EVANESCENT

MODES BY LONGITUDINAL CURRENTS

Let us consider a regular waveguide of an arbitrary form

of cross section S with the longitudinal z-axis. For any two

modes, we have the orthogonality relation [4]

where

(~=o -:x
ZZx )

(1)

(2)

F?Zis the unit vector along z-axis, y is the propagation constant

(3)

is the field function dependent on transverse coordinates of a

waveguide.

For orthogonal modes we hive the inequality TP + ~~ # O.

We will mark the mode with the number q, which satisfies the

condition Tp + fi~ = O, as the mode with the number p. This
mode is conjugate to the mode p. For conjugate modes we

have an expression for the net-m

where ~1 and fil are transverse components of the fields.

If modes are propagating (’y = i@, we have degeneration

of conjugate modes: ~P = @j. For evanescent modes (~ = a),

two modes with yP = aP and TF = – aP are conjugate

modes. The norm (4) describes an active power flow through

a waveguide cross section. Every propagating mode realizes

a transfer of energy. In a case of evanescent modes, the

carrying over of the energy lmay be realized only by pairs

of modes. The modes of every pair are characterized by

different signs of amplitude variation. In other words, the

transmission of the energy by evanescent modes is possible

only at a certain distance. For a single evanescent mode, the

norm (4) is equal to zero. It is well known that in order

to obtain a unitary generalized scattering matrix one has to

have two cascaded junctions: above cutoff waveguide—below

cutoff waveguide—above cutoff waveguide (see, for example,

[27]). This means that the norm (4) is real quantity only if the

below cutoff waveguide sectiom will be loaded at the ends by

two above cutoff waveguide sections. In such a case, the fields

of modes p and 15are phase-slhifted by the angle 7r/2.

Inhomogeneous Maxwell equations, in the region of exci-

tation of an isotropic waveguide, we represent in the operator

form

~~: = ~ (5)

where

(6)
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is the Maxwell operator

(7)

(8)

+ mw are co~espondingly electric and magnetic- ‘~ and J.7
currents.

To solve (5), we express transverse components of the

fields as a sum of transverse components of mode fields. In

comparison with [4], we extend our analysis of excitation for

both propagating and evanescent modes

n) P .fi

where am(z) is a scalar coefficient for propagating modes

(m = 1, 2,..), aP(z) and up(z) are scalar coefficients for

evanescent modes (p = fi = 1,2, . . .).

Analogous to the procedure worked out in [4], for the

longitudinal components of the field in isotropic dielectric

waveguide one can obtain

m P .P

+ 0,.. (lo)

(11)

is the additional field in the excitation region caused by

longitudinal parts of electric and magnetic currents.

We will consider below the relations for evanescent modes

supposing that analogous relations for propagating modes may

be easily obtained. One has the following evident relations

(12)

Since the norm (4) (divided by 4) describes active power flow,

we have N; = Nfi = Np. The coefficients in (9) and (10) are

determined on the basis of the orthogonality relations

(13)

(14)

In accordance with (9) and (10), we have the following

system of two excitation equations for modes p and j (see

(41) in [4])

where

S1 is the cross section of the currents’ region (the region of

excitation).

After integration by parts with the use of the Maxwell

equations, one can obtain

where lj is the contour surrounding the cross section Sj, and

~L,l 1 are the vector functions

Rj is the matrix

(RI = 0 ‘ix
—iiJ x )

(20)

iij is the unit vector along the external normal to the contour 13.

We have an analogous relation for the integral in the right-hand

side of (16).

Evidently, the spectral method includes the results obtained

from the reciprocity theorem and gives the contour integral as

an additional term in the equation usually obtained from the

reciprocity relation [1]. On the other hand, one can see that the

combination of the spectral method and the reciprocity relation

(see (42) in [4]) is superfluous. An important conclusion

follows from our analysis. One has two possibilities to describe

the mode excitation problem in waveguides if longitudinal

currents take place. The first possibility is based on using

delta functions caused by abrupt discontinuities of longitudinal

currents [see (15) and (17)]; the second is to use the contour

integral on the boundary of the currents’ region [see (18)].

We will conduct our investigations in this paper by taking the

contour integrals into consideration.

In the coupled-mode theory polarization currents have to

be considered. For dielectric guide structures we have an

electrical polarization current [1]. For more complex guide

structures we have both electrical and magnetic polarization

currents. One meets such a case in the analysis of mode
coupling in chirowaveguides [28]. To illustrate an application

of the spectral method for the coupled-mode theory, we

complete this section with an example of dielectric guide

structure.

Let us consider closed cylindrical waveguide filled by

homogeneous dielectric medium. Without any loss of gener-

ality, one can suppose to have vacuum with permittivity CO.

Normal modes of such a waveguide are classified as TE and

TM modes. Let an isotropic dielectric cylindrical insert with

permittivity c be placed inside the waveguide (Fig. 1). Our

consideration will be restricted to one insert, but it may be

easily extended for a number of dielectric inserts.
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An excitation of normal modes of the basic system takes

place by means of the electrical polarization current [1]

~*’1 = iwAel? (21)

where

Ae=e–eO. (22)

The magnetic polarization current is equal to zero. By using

(9) and (10), one can obtain

)
(23)

(24)

On the basis of (15), (16), (18), (23), and (24), we have the

excitation equations for evanescent modes

Q
e/ >

/j

*

5
&

0 -Lz
Ilj Sj x

% o

s

Fig. 1, A cylindrical waveguide with a dielectric insert.

One can easily obtain analogous equations for propagating

modes. We will characterize the role of the contour integrals

in processes of mode coupling a~sinduced polarization effects.

III. MODE COUPLING AND ENERGETIC RELATIONS

In the coupled-mode theory, an analysis of power transfer

between modes is a very useful tool [1]–[3]. Such an analysis

is necessary also in our case, when induced polarization effects

are taken into account. Let us write the Maxwell operator (6)

in the next form [4]

(27)

where Ml is the operator similar to the operator M but

operating only over transverse coordinates. By using such

a representation for inhomogeneous Maxwell equations (5)

and for the complex conjugated form of these equations, one

obtains

(28)

For homogeneous boundary conditions, the first integral in

the left-hand side of (28) is equal to zero, The second integral

in the left-hand side of (28) corresponds to the variation of

power flow along the z-axis. Thus, in such a case, the variation

of power flow along the z-axis is determined by the excitation

integral in the right-hand side of (28).

However, another situation exists when the longitudinal

part of electromagnetic field is expressed by (10). Because of

inhomogeneous boundary condition, caused by the field fiez,

the first integral in the left-hand side of (28) will not be equal

to zero. An exchange of power lbetween interacting modes has

special features in such a case

Let us consider two propagating modes p and q. We have

on the basis of (9) and (10)

lM7L+qp-l?E+tz. z (29)

where
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When we substitute (29) into (28), we can see that the

second integral in the left-hand side of (28) is expressed as

4%+3 + ~q4V; )
=Np — —

dz (-h
(30)

by using the relations of mode orthogonality. The integral

in the right-hand side of (28) is equal to zero. This is not

so difficult to show when (11) and the relation (21) for the

polarization current are taken into account.

Now we dwell on the first integral in the left-hand side

of (28). After some transformations using the procedure of

integration by parts, one can be convinced that

where R, is the matrix (20). For electric polarization current

with the use of (11) and (24), we have, for two propagating

modes

For the propagating modes, all vector products in (32) are

pure imaginary (one can be convinced

on the basis of further consideration).

we can represent (28) as

with such an assertion

Therefore. as a result,

One can see that the term in the right-hand side of (33) is real.

Our analysis shows that because of an asymmetry in the field

structure of two propagating modes, we have an asymmetry in

the coupling of these modes. Owing to induced polarization

effects, one obtains exchange of active pc}wer not only between
two modes (even if the phase synchronism takes place) but

with all modes (propagating and evanescent) of the spectrum.

By extending the analysis of energetic relations on the infinite

functional space of propagating modes (see Mathematical

Appendix), instead of (33), one obtains

(34)

An asymmetry in mode coupling due to induced polarization

effects results in some changes in well-known theories of

mode-coupling processes.

Fig. 2. A system of two parallel dielectric waveguides.

IV. INDUCED POLARIZATION EFFECTS IN THE COUPLED-MODE

THEORY OF PARALLEL DIELECTRIC WAVEGUIDES

The general theory represented above enables us to extend

the coupled-mode theory [7] for the analysis of strongly guided

structures when large refractive index differences take place.

Let us consider a system of two parallel isotropic waveg-

uides, composed of waveguides a and b and uniform in z

direction (Fig. 2). Let .sa(z, y) and Eb(z, g) be the distributions

of the permittivity of isolated waveguides a and b, correspond-

ingly, and E(z, y) be that of the composite waveguide system.

We introduce the quantities

Ac’(z, y) == C(Z, y) – E%(z,y), i=a, b (35)

where A# (x, y) gives the perturbations in the permittivity

distribution, which has a nonzero value only inside the core

region.

The homogeneous Maxwell equations for the composite

waveguide system can be represented as two systems of

inhomogeneous equations

~a~ . p (36)

where

To solve (36), one can use the orthonormal basis of modal

transverse fields. If the basis of propagating modes of the guide

a is used, we have

rn=l

and the excitation equation

When we represent the fields by the basis of propagating

modes of the guide b

n=l

we have the excitation equation

(41)

In (40) and (42), -y;, V: and N%, N: are, correspondingly,

the propagation constants and the norms of modes. The



KAMENETSKII INDIUCED POLARIZATION EFFECTS IN COUPLING PROCESSES OF WAVEGUIDE MODES

functions @ and ~b are defined on the basis of (17). For

our case of propagating modes, T% and -y: are pure imaginary

quantities.

Now we express the transverse part of the total field ~1

approximately as linear combinations of two guided modes of

the waveguides a and b, respectively, [7]-[10]

The longitudinal components of the total fields are also

linear combinations of the longitudinal components of two

guided modes

The coefficients D“ and Db are accepted to be equal to

unit in [8]. In the papers [2] and [7], these coefficients are

expressed as

‘()fo“=61’ i=a, b. (45)

One can see that the question concerning quantities of the

coefficients Da and Db, is still debatable [91, [101, [291, [301.
According to (10) and (1 1), the longitudinal electric field is

described as a series of propagating modes

8=1

in the regions without sources (i.e., in the regions where

“Z = O or A./ = O, i = a, b). Therefore, in our model of.71]
the two modes representation, it is more correct to have two

kinds of expressions for the total longitudinal fields: the first

kind for the region where AEa # O, the second for the region

where Aeb # O. It means that for the region restricted by the

cross section of the guide b, sb (where Aea # O) we have

For another region that is restricted by the ‘cross section of

the guide a, S. (where Acb # O), we obtain

The coefficients Da and Db are determined according to

(45).

On the basis of the procedure expounded in Section II

of the paper, taking into account the total field expressions

(43), (46), and (47), one obtains for (40) and (42) after some

transformations

dam(z)
— = –’%am(z) +%% A~(.z) + K&bnBn(Z) (48)

dtf(z)

dz
= -i’tbn(~) + @$#n(z) + &Aiz(z) (49)

where

! }‘:”[&n,lx (I?:l)”].‘)&dl ..ds+ ~by (51)

One finds the coefficients K~~ and K$& analogously by

replacing the indexes a and b and the indexes m and n.

In these expressions, 1. and i~ are the contours surrounding

the waveguide cross sections, correspondingly, S. and S6. na

and ~b are the normals to the eontours 1. and lb (Fig, 2),

Now we will use the traditional procedure of the Galerkin

method [26] to solve the approximate equation (43), On

the basis of the representation (39) and using orthogonality

relations, one obtains

am(z) = Am(z) + C#nBn(z). (52)

Analogously, the use of (41) gives

b.(z) = l?.(z)+ C~mAm(z). (53)

The coefficients C~~ and C~W, describe the mode overlap

/
1 (Qi}&) .(8:J*d.s.C:m=z s (55)

After substituting (54) and (55) into (48) and (49), we have

the coupled-mode equations

dArn@) = /j~Anz(z) + k“b%(z)

dz
(56)

~~.@J = d~Bn(Z) + kb”Arn(z)

d,z
(57)

where

6“ = –y; + [K:m – C:bn K$m

+ C&:cym(T: – 7;)]/(1 – G&am) (58)

6b = –qJ~ + [K:: – C&K;bn

+ c&;cym(7& – 9’:)]/(1 – G&a%) (59)

( b - T;, - K::)] /(1 - G&c:m)kab = [K;: + %: ?’.

(60)

/lba = [Kfim + C$m(y: – CY:– K~m)]/(l – C;bnC$m).

(61)

The expressions for the propagating constants S“ and

tib and the coupling coefficients kab and kb” have similar

forms to those obtained in [7]. Nevertheless, the coefficients

K:m, K&, K:bn are distinguished. The principal character

of these distinctions is displayed by taking into account the

contour integrals, which describe the singularities caused by

abrupt discontinuities of the pwmittivity.

In [7], Hardy and Streifer have shown that even in the
lossless case the coupling coefficients kab and /cb” are not

complex conjugates for nonidentical waveguides. It is caused

by nonidentity of AE” and Aeb. An asymmetry in mode

coupling is expressed by the overlap integrals C:bn and C~m.

In our analysis, we have demonstrated that taking into account

the induced polarization effects, gives additional asymmetry in
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the mode coupling. This is considered when the TE-TM or

TM-TM coupling takes place.

Our theory is a necessary supplement to the improved

coupled-mode theory [7] for optical waveguides with large

refractive index differences.

V. ROLE OF GEOMETRIC EFFECTS AT MODE COUPLING IN

ISOTROPIC DISCRETELY INHOMOGENEOUS WAVEGUIDES

In this section, the geometric (induced polarization) ef-

fects on mode coupling in IDIW will be shown in another

application of the theory,

In different problems concerning IDIW structures, one can

use different types of sets of TE and TM modes: propagating

or evanescent modes of a hollow waveguide. If a model of

IDIW structure is used for the analysis of optical waveguides,

the cross section of hollow metallic waveguide has to be large

enough [21 ]–[23], and one has to use a set of propagating TE

and TM modes. On the other hand, the frequency regions of

millimeter or submillimeter IDIW correspond to near cutoff

frequencies of hollow metallic waveguide with the same

geometry of cross section. Moreover, complex and backward

modes in IDIW usually take place in the region of cutoff

frequencies of a corresponding hollow waveguide [15]-[20].

The analysis of millimeter or submillimeter IDIW has to be

based, therefore, on the sets of propagating and evanescent

modes.

Let us consider the IDIW structure shown in Fig. 1. For two

forward propagating modes (TE mode m with the propagation

constant -ym = ifim and TM mode n with the propagation

constant ~~ = t~~), by using the analysis in Section II, one

obtains

()(alum, _”—’lpm + cmmL c,nn )( )am

Zu. –nm c —zpn + L’nn an

(62)

where

(63)

(70)

One can see that, in comparison with expressions usually

obtained for the coupling coefficients (the expressions for

c ~~, Ckn, C~n, and C~~), we have additional terms caused

by the contour integrals (the expressions for Fn and K~n ).

For a wavelike solution of (62), which is determined by the

factor e–~z, one obtains

-y2 + [–i(fin + /%) + Cm + C:n + Fn]v

+ (z/3~ – C~~)(t/3n – C:n – Fn) + lC~n[2

+ (C~n)*Krnn = o. (71)

Here we suppose that N~ = Nm. In such a case, one has

c .~ = -(c~n)”. (72)

It means that without the terms K~n the matrix of coupling

coefficients is skew–Hermitian. Analogous expressions can be

obtained for two propagating TM modes. In a similar way,

one can consider the TE-TM and TM-TM couplings of two

forward and backward propagating modes.

Let modes m and rh be two conjugate TE evanescent modes

and modes n and ii be two conjugate TM evanescent modes.

The propagation constants of modes are ~~ = n ~, T% =

—a m,ym = O!n,yii = –an.
On the basis of (25) and (26), one obtains the coupled mode

equations shown in (73) at the bottom of the page.

Analogous to the coupling considered above for propagating

modes, some coupling coefficients in (73) also have terms with

the contour integrals.

Our analysis shows that both for propagating and evanescent

modes, the matrix of the coupling coefficients is asymmetrical

because of induced polarization effects. For an arbitrary type

of two propagating modes. one can obtain, on the basis of the

energetic relations from Section III

d(apaj) d(aqaj)
Np — +Nq —

$apa~ (Nq Kqpd! NpK~q) + a~aq (Np Kpq + NqK&)

(74)

(. &.L ).&L ++ii “ J$:l,ds
&o + lie

where the coefficients Kpq and KqP are determined by (69).

An analysis of the field structure of propagating modes in

’65) conventional guides (for example, in hollow waveguides [31])

Fn=~
!

‘6 (;.,, X ii:l) filcil
N. ~, CO+ Ae

(66) shows that when the relation (72) takes place. the coefficients
Kpq and Kqp are purely imaginary. Therefore, we have

C.. F C~n + K~n (67)
d(a~a~) + N d(a~al)

Ckn=. g
J

AE&L .&L ds (68)
NP————— —

m s, $(ujaq - ~pa$(NpK,q + NqK~,). (75)
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VI. MODE COIJPLING IN A RECTANGULAR WAVEGUIDE WITH

A DIELECTRIC INSERT—SOME NUMERICAL ESTIMATES

To estimate tlhe importance of taking into account induced

polarization effects in the mode coupling numerically, we

adduce here some numerical examples for a rectangular wave-

guide with a dielectric insert. We will analyze the structure

used in [16], [17]. Our results may easily be extended for

another structure of IDIW.

Let us consider the coupling of two forward propagating

modes: TE mode m and TM mode n. On the basis of the

known expressions for the fields in a rectangular waveguide

[31] and corresponding relations for the norm Nm and N.,

one can obtain the expressions for the coupling coefficients

(63)-(70). With the use of the following designations
-m. n— .m. n-

rm, rn, sn, = 1,2, . . ..s~=o.l.2,. . .

we obtain

(76)

(77)

(78)

WA< h ((z+t)/2

c —.mm = —7,
iv. //

(E:. + E:g) dx dy
o (a-t)/2

_ w2poAeth
=—

‘2~~ab[(k~)2 + (k~)2] {
(ky)z

( sin k~t
c 1 + cosk~a—

kpt )

“ 1-si::;:h)+(k~)2 (1-cOsk~a*)(

( sin 2krnh
- 1 + Zkm;

u )1 (79)

. dx dy

th

{

P.—— —iAe–—
2ab [(k~)2 + (k$)2]e0

[( )(
. (/$12 1 + cosk~a~ 1-

sin 2kgh

z 2k;h )

+ (/?;)2
(

sin kgt
1 – cosk#a—

)(

sin 2k~h

pl~ 1 + 2k;h )1
(&)2 + (~J)2 ~_ ~osknasinK?(+~(Eo + fk) “ Icy )
( sin 2k~ h

. l–
2k;h )}

(80)

wAi~
h (a+t)/2

c’ –iT-
mn = 1! (EnOE& + En,E;v) dx dy

m o (a–t)/2

wAeth
= —i—

42 l[(kV)2 + (kY)2][(k~)2 + (k$)2]ab

sin k~dt

)(

sin l$b h sin l$dh
.— —

~:dt ~sbh – k.:dh
Y )

(sin l$bh sin k;d h
.— ——

~;bh + ~;dh )1 (81)

[(/(a+t)/2

‘n= - (EO + Ae)Nn
En= H;z dy

(lz-t)/2 ) [,=L

+(; )

h

En, H:g dy

lm=(a-t)/2
.

- (JhEnzH:ydy)l=(a+t)/J
.

Adh

=‘ (CO+ Ae)fl.ab [
(k;)” ‘i;;:~h

Y

( sin k~t
. 1 – cosk~a—

)

sin knt

k:t
+ (kS)2 coskla~

x

(
. l–

sin 2k~h

2k;h )1 (82)

- (/
h

o

[(Jl(a+t)/2

K ––
~’” – (EO+ AE)Nm

En, H;z dx
(cL-t)/2 ) Iy=h

+(LA’ )

h

Enz H:v dy

l+A)/2

H:, dy
)

~ I.=(a+t),, 1r__–Ae (k:)2 + (?$)2

r

‘oBm
=i

r

(e. + A~)wab (kp)2 + (k;)2 ~“~n

E n.

[ ( sin ksbt
. I& .sin k~h . cos k~h cos k~ba~ k;bk

ad sin kadt
—

)
~ – k~h(cos k~ba sin k~bt

Cos ‘X a ~:dt

(

‘ sin~b h sin k;dh
+ cos k~da sin k~dt) — )1k;bh – J.;dh “ ’83)

\

In (81) and (83), we have used the condition N~ = N~.

We have obtained (79)-(83) for k~n # O,k~n # O. For

k; = O, one obtains

c
w2pOAeth

(

sin k~t
mm = —a 1 – cosk~a—

2/3mab )k~t “
(84]

One can be convinced that if we substitute k~ = O into (81)

and (83), we have to divide the resulting expressions by two.

For numerical estimates, vve will analyze a waveguide

structure composed of a rectangular a x b waveguide and a

rectangular t x h dielectric insert. We will consider K.-band

wave~uide (a = 15.799 mm, b = 7.899 mm) and will analyze
1 -.
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Fig. 3. Nonnahzed coefficients F. //3 (u ), K~n /ti(-x-x-x-) and normalized quantities G’n. /C~n (+ + +) Cm. /C~n (-x- -

as functions of normalized width t/a of a dlelectnc insefi, h = O.2b, f = 1.1 fc, Ac/ CO = 1.

x -x–)

the TE-TM mode coupling for two degenerated modes. These

are the modes with phase synchronism. To demonstrate the role

of the induced polarization effects, we calculate the coupling

coefficients for two propagating modes: TE11 and TM11. In

Fig. 3. one can see normalized coefficients Fn//3, K~n/f?(@ =

~~ = fin) and normalized quantities Cnn/C~. = 1 +Fn/C~n

and C’~n/C~m = 1 + K~n/C~n as a function of normalized

width t/a of a dielectric insert when the height of an insert is

h = 0.2b. Analogous dependence as a function of normalized

height h/b for t = 0.2a are shown in Fig. 4. The calculations

were made for the normalized differences of a permittivity

AE/eO = I and for frequency ~ = 1, lj., where .f, is the cutoff

frequency of a hollow waveguide. It is evident that induced

polarization effects have considerable influence on values of

coupling coefficients. One can also note a weak dependence

of C.. /C~n on normalized width t/aand a weak dependence

of Cnn /C~n on both normalized width t/a and normalized

height h/b.

The relations between coupling coefficients have analogous

characters for below cutoff frequencies and do not adduce here,

Figs, 5–7 demonstrate how induced polarization effects

influence the values of propagation constants for TE11–TM11

modes coupling. The coupling of two propagating modes may

be correctly used for the analysis of dispersion characteristics

of IDIW if frequencies are far from cutoff frequency, For

near cutoff frequencies, one has to use the full mode coupling

analysis. The curves in Fig. 7, therefore, may be less correct in

comparison with the curves in Figs. 5 and 6. Nevertheless, one

can see an interesting tendency concerning an appearance of

backward waves caused by induced polarization effects (see

Fig. 7).

VII. CONCLUSION

An analysis of waveguide problems based on a solution of

full vector-wave equations is very important for many appli-

cations. To solve such problems, a new coupled-mode method

that takes into account induced polarization effects has been

proposed in this paper. This method may be a very powerful

tool for the analysis of mode coupling (both propagating and

evanescent modes) due to both the material and the geometric

effects. One can see that, in our method we solve the first-order

Maxwell equations for a full electromagnetic field, instead of

the second-order vector equations used separately for electric

and magnetic fields in [23] and [32].

Our method has arisen from the analysis of mathematical

incorrection that takes place when one uses the reciprocity

relations to solve an excitation problem of waveguides by

longitudinal currents [1]. The spectral method is used to avoid
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such an incorrection [4], [5]. This paper represents further

development of the spectral method and shows the importance

of taking into account singularities, caused by abrupt disconti-

nuities, in mode-excitation and mode-coupling problems. One

can see that such singularities may play a very important

role in both open-optical and closed-microwave waveguides.

Particularly, these geometric effects may be useful in the

explanation of the reasons that cause an appearance of complex

and backward waves. An asymmetry in mode coupling, caused

by induced polarization effects, gives a non–Hermitian matrix

of coupling coefficients for a finite number of coupled modes.

Nevertheless, this matrix is Her@tian for an infinite number

of coupled modes. Because of induced polarization effects,

full exchange of active power does not take place even for

phase synchronism of two propagating modes. In such a case,

one obtains exchange of active power not only between two

modes but wittt all modes [propagating and evanescent) of the

spectrum.

In this paper,, we have not adduced the full numerical

analysis of certain waveguide structures to corroborate our

theory. This may be the subject of further publications. The

corroboration of the theory is based on the analysis of some

waveguide problems and some numerical estimates and is,

evidently, sufficiently convincing.

MATHEMATICAL APPENDIX

A. On the Role of Singularities in Processes

of Waveguide Mode Interactions

The coupled-mode theory represents the self-matched prob-

lem with polarization currents dependent on the electromag-

netic fields. In such a case, abrupt discontinuities of longitudi-

nal polarization currents cause singularities. We have seen, for

an example of two propagating modes (see Section III), that

these singularities give an asymmetry in the mode coupling.

In this Appendix, we will extend the analysis for an infinite

number of modes and discuss the problems of convergence.

For propagating modes, we have

O= fix+fiez (Al)

where

m=l m=l

(A2)
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Fig.5. Normalized propagation constants (/31/P, L?Z/P)obtamed from(80)

as a function of normahzed width t/a. a) (+ ) P! O)/l! (–x–x–x–)

,@~L)/8 normalized propagation constant of the first wave with and without

taking into account induced polarization effects. b) (+ + +) 6~)/P,

(-x– -x- -x-) ti$)/8 normahzed propagation constant of the second
wave with and without taking mto account reduced polarization effects.
h = 0,2b. f = l.lfc, Ae/eo = 1.

Similar to the analysis conducted in

where

Section III, one obtains

=J (A3)

!J = - [ti=(Rj@z) + ti;(R@,z)] dl. (A4)
12

On the basis of (14) and (24), we have, after some transfor-

mations

.l=-~,~(~la.fi.ll x~lak~;.

m

+~a~k~l.~

m
‘+

)

amHml . iij dl . (A5)
m=l m=l

Since 13ml = – (Z/WG)VL . dml, one obtains

J=~
“/

~ (Co& [(VL x El) x E;
We.

- (V; X fit) X fi~] ~ ii, dl (A6)

where

Tn=l

a membrane function, the fields I?l and

coinciding phases. The integral (A6) is,

0.6’
I I I I

0.2 0.4 0.6 0.8 1.0

Fig, 6. Normalized propagation constants (/31 //3, h//3) obtained from (80)

as a function of normalized height h/b. The curves are designed in the same
way as in F1g 5. t = 0.2a, f = l.lfc, ACIG = 1.

therefore, equal to zero and results in

i%y”
?n=l

al(z)

.2(2)

and ; =

(A7)

[A8)

be the vectors in the finite measure space. These vectors are

correlated together by the infinite matrix C

G= cd. (A9)

Because of (A7), we have

Z.P+ G. Z*=O (A1O)

(Cd)z” = -d(cd)*. (All)

According to the analysis conducted in the paper

c~, # –c;, . (A12)

The matrix C is, therefore, a non-skew–Hermitian matrix.

Nevertheless, the expression (Al 1) gives the condition of self-

conjugation of the infinite matrix C. The infinite matrix C is
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0.2 0.4 0.6 0.8 1.0

-L _>
a

‘ Fig. 7. Normalized propagation constants (81 /~, @z//3) obtained from
(80) as a function of normalized width t/a for near cutoff frequency.
h = 0.2b, ~ = 1.02~c, Ae/eO = 1. The curves are designed in the same

way as in Fig. 5.

a skew–Hermiti;an [33]. We can rewrite (A 11) as

For a wavelike solution of (A9), which is determined by

the factor e–~”,, one obtains

yd’= (7 (A14)

where

Nlal

[JN2a2

d’= : .
Nmam

Because of (A IIO), we have

(A15)

(A16)

therefore, ~ = i~.

One can make the following conclusion from our consider-

ation. For a finite number of propagating modes, we have an

exchange of active power not only between these propagating

modes but also with all continuum of evanescent modes.

The relation (A7) is the condition of converge for the series

composed by power flows of propagating modes, Because

of an asymmetry in mode coupling, the matrix of coupling

coefficients is non–Hermitian. Nevertheless, the infinite matrix

of coupling coefficients is self-conjugated [see (Al l)]. An

asymmetry in the coupling of propagating modes, caused by

singularities, does not give complex modes in the spectrum.

One can see that this spectrum contains only propagating

modes [see (A16)].

One can carry out the analysis of interaction pairs of

evanescent modes in a similar way. In this case, a finite number

of pairs of evanescent modes will be exchanged by power also

with all continuum of propagating modes.
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