- ———system-of mode-full-fields-as-a-system-of weig

572 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 4, APRIL 1996

Induced Polarization Effects in Coupling
Processes of Waveguide Modes

Eugene O. Kamenetskii

Abstract— An analysis of waveguide problems based on a
solution of full vector-wave equations is very important for
many applications. To solve such problems, a new coupled-mode
methed, taking into account the so-called induced polarization
effects, is proposed in this paper. The theory is based on the
spectral method, which makes it possible to analyze correctly
a mode excitation by arbitrary sources with longitudinal com-
ponents. It also takes into consideration singularities caused by
abrupt discontinuities of longitudinal currents. The method may
be a powerful tool for investigation of propagating and evanescent
modes coupling due to both material and geometric effects.

1. INTRODUCTION

SOLUTION to the excitation problem in waveguides

may be carried out with the so-called projective method,
which employs the basis of normal modes of a regular wave-
guide as a system of trial and weight functions. Such a method
allows us to attract the coupled-mode formalism—a very
powerful tool in the analysis of various waveguide problems
[11-[3]. It has been shown in [4] and [5] for a wide class
of waveguides (double anisotropic nonchiral, isotropic chiral)
that in the presence of longitudinal currents as sources of
excitation, it is more mathematically correct to use the so-
called spectral method rather than the reciprocity relation in the
form used in [1]. In this relation, we essentially apply a system
of mode transverse fields as a system of trial functlons and a

the other hand, one can obtain the excitation equation on the
basis of a system of mode transverse fields as trial and weight
functions. It enables us to apply correctly the Galerkin method
for the solution of inhomogeneous Maxwell equations [4], [5].

The main inference, which one can conclude from the
theories in [4] and [5], is that the efficiency of excitation is
determined by both the values of transverse currents and the
transverse derivatives of longitudinal currents. Therefore, the
abrupt discontinuities of the longitudinal currents on the wave-
guide cross section cause the excitation by delta functions.
However, as it will be shown below, one can obtain another
approach without using delta functions. In this approach, we
have two excitation integrals. The first is the integral over
the cross section of excitation region S; and the second
is the integral over the contour surrounding S,. Two such
approaches are similar to those considered in [6] for the free-
space scattering problem inside as well as outside the source
region.
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In this paper we apply the theory [4]. based on the spectral
method. for development of the coupled-mode formalism
by taking induced polarization effects into account. Such
effects are caused by abrupt discontinuities of longitudinal
polarization currents and have to be considered in a large
variety of mode-coupling processes. We will concentrate on
two problems: the coupled-mode theory of parallel dielectric
waveguides and mode coupling in isotropic discretely inho-
mogeneous waveguides. These problems may be indicated in
the following way.

A. Coupled-Mode Theory of Parallel Dielectric Waveguides

In a scope of the so-called improved coupled-mode theory
of parallel dielectric waveguides, some ambiguities concerning
the role of the axial electric field component take place. It gives
different expressions in the theories presented in [7] and [8]
for the coupling coefficients. The discussions in [9] and [10]
about the question of what is the best approach (based on the
reciprocity theorem [7] or the variational principle [8]) do not
give us the comprehensive answer. It has been pointed out in
[11] that the vector-formulated improved coupled-mode theory
gives a fundamental error for strongly guiding structures in
the case where fields are not pure TE waves. To disperse of
such a fundamental error, the authors of [12] used the theory

polarlzatlon charges The problem, however, is not closed.
Expressing the axial electric field according to [7] is more
mathematically valid than using the field representation in [8]
(this is shown in [1], [4], and [13]). The question. however,
is about the correctness of using the reciprocity theorem for
strongly guiding structures in the case that fields are not pure
TE waves. The problem may be solved on the basis of the
spectral method [4]. In this paper we will combine the theories
of [7] and [4] for the analysis of strongly guiding structures.

B. Mode Coupling in Isotropic Discretely
Inhomogeneous Waveguides

The transformation of TE and TM modes into hybrid modes
in isotropic discretely inhomogeneous waveguides (IDIW)
is shown in [14]-[17]. One of the interesting features of
lossless IDIW is the presence of complex and backward-
wave modes. Such modes can exist in a waveguide with a
dielectric insert as modes of “hybrid-type” [15]-[18]. In a
majority of papers devoted to the problem of complex and
backward waves propagation, the spectral domain analysis is
used. Nevertheless, in a number of papers, endeavors were

0018-9480/96%$05.00 © 1996 IEEE
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made to explain the reasons that result in complex modes
in the spectrum. In [19] and [20], complex waves in IDIW
were predicted by the analysis of symmetry of a characteristic
matrix.

In this paper, we consider the coupling of orthonormal
(TE and TM) propagating and evanescent modes of a hollow
metallic waveguide caused by insertion of a dielectric rod. Our
analysis shows that by taking into account induced polarization
effects, we obtain asymmetrical mode coupling in IDIW.
According to our consideration, some conclusions stating that
complex and backward waves in IDIW occur as a result of
induced polarization effects in mode coupling may be made.

An investigation of mode coupling in IDIW may also
be useful for other waveguide problems. A model of IDIW
structure has been used recently for the analysis of optical
waveguides [21]-[23]. It consists of enclosing the waveguide
within a rectangle large enough to ensure that the fields of the
guided modes of interest are zero at this boundary. In [21] and
[22] the problem was solved on the basis of the scalar wave
equation, but in [23] the analysis of full vector-wave equation
was made. Optical waveguides, in comparison with millimeter
or submillimeter waveguides, are usually weak guide struc-
tures. Therefore, the scalar solutions may be just as accurate
as the vectorial solutions [24]. Nevertheless, one can see now
a rising interest in optical waveguides with large refractive
index differences concerning both theoretical aspects (mode
solutions for single dielectric waveguide [23] or coupled-mode
formulation for parallel dielectric waveguides [11], [12]) and
applied problerns for working out high-density integrated pla-
nar lightwave circuits [25]. If a waveguide has large refractive
index differences, a vector solution is necessary. For such a
solution one can use fully numerical finite-element or finite-
difference methods [24]. Another approximate method based
on the Galerkin method is shown in [23].

According to the Galerkin method, one expresses the vector
field as series expansions in terms of a complete set of
functions that otherwise may be quite arbitrary [26]. In [23] a
complete orthogonal set of sine functions was used. As another
type of complete orthogonal set, one can use the basic system
(TE and TM modes) of a hollow metallic waveguide and
consider the dielectric insert as some kind of irregularity. In
such a case, the singularity caused by abrupt discontinuities of
the permittivity on boundaries of dielectric insert is described
by the induced polarization effects in the mode-coupling
process. The problem formulated in this paper is similar to the
vector-formulated problem in [23], but instead of two vector-
wave equations (for electric and magnetic fields), we have
only one vector equation.

The main goal of this paper is to demonstrate an appreciable
role of induced polarization effects in mode-coupling processes
for a wide class of waveguide problems. The paper may be
conventionally divided into two main parts. The first part
(Sections II, III, and the Mathematical Appendix) represents
the general theory, and the second part (Sections IV, V,
and VI) is devoted to some applications. Some numerical
examples, which are adduced for a rectangular waveguide with
a dielectric insert, enable estimating the importance of taking
into account induced polarization effects in the mode coupling.

II. EXCITATION OF PROPAGATING AND EVANESCENT
MODES BY LONGITUDINAL CURRENTS

Let us consider a regular waveguide of an arbitrary form
of cross section S with the longitudinal z-axis. For any two
modes, we have the orthogonality relation [4]

(9 +733) QU5 ds =0 M)
where
0 —€,x
(L) e
€, is the unit vector along z-axis, -y is the propagation constant
o E T,
Upalz,y) = ( cpal®9) ) 3
Hpq(z,y)

is the field function dependent on transverse coordinates of a
waveguide.

For orthogonal modes we have the inequality v, + 75 # 0.
We will mark the mode with the number ¢, which satisfies the
condition v, + 4, = 0, as the mode with the number p. This
mode is conjugate to the mode p. For conjugate modes we
have an expression for the norm

xHy ) -&ds (@4

where E L and i 1 are transverse components of the fields.

If modes are propagating (v = 33), we have degeneration
of conjugate modes: 3, = ;. For evanescent modes (y = ),
two modes with v, = «ap and 75 = —a, are conjugate
modes. The norm (4) describes an active power flow through
a waveguide cross section. Every propagating mode realizes
a transfer of energy. In a case of evanescent modes, the
catrying over of the energy may be realized only by pairs
of modes. The modes of every pair are characterized by
different signs of amplitude variation. In other words, the
transmission of the energy by evanescent modes is possible
only at a certain distance. For a single evanescent mode, the
norm (4) is equal to zero. It is well known that in order
to obtain a unitary generalized scattering matrix one has to
have two cascaded junctions: above cutoff waveguide—below
cutoff waveguide—above cutoff waveguide (see, for example,
[271). This means that the norm (4) is real quantity only if the
below cutoff waveguide section will be loaded at the ends by
two above cutoff waveguide sections. In such a case, the fields
of modes p and § are phase-shifted by the angle = /2.

Inhomogeneous Maxwell equations, in the region of exci-
tation of an isotropic waveguide, we represent in the operator
form

MU=f &)
where
iwe —VX
M= <V:>< Wi ) : ©
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is the Maxwell operator

7= (g) @
R el
f = (j?mag ) (8)

= el

7 and 7 ™*& are correspondingly electric and magnetic
currents.

To solve (5)., we express transverse components of the
fields as a sum of transverse components of mode fields. In
comparison with [4], we extend our analysis of excitation for
both propagating and evanescent modes

U, = Zam Z)ﬁmi + Z (ap(z)ﬁzu +

m

as(2)05.) )

where a,,(z) is a scalar coefficient for propagating modes
(m = 1,2,---),a,(z) and az(z) are scalar coefficients for
evanescent modes (p = p = 1,2,---).

Analogous to the procedure worked out in [4], for the
longitudinal components of the field in isotropic dielectric
waveguide one can obtain

0y = Zam ﬁm|\+z (ap(2)T,

+ Ue T

+a5(2)T5,)

(10
where

Zel

J]

mag

al

Ue.z: =

2
W

(11)

e N

is the additional field in the excitation region caused by
longitudinal parts of electric and magnetic currents.

We will consider below the relations for evanescent modes
supposing that analogous relations for propagating modes may
be easily obtained. One has the following evident relations

N, = L(QﬁpL)ﬁgl ds = /Sl_]'pi(Q[_f'h)* ds = Nj.

12)
Since the norm (4) (divided by 4) describes active power flow,
we have N = N = N,,. The coefficients in (9) and (10) are
determined on the basis of the orthogonality relations

1 — z,

nle) = 5 /S(QUL) U ds (13)
1 o 2,

a;(z) = Fp /S(QUL) Uy ds. (14)

In accordance with (9) and (10), we have the following
system of two excitation equations for modes p and P (see
(41) in [4])

da,(z) 1 Lo

;,z + Ypap(z) = Fp s, F-U; ds (15)
day(z) _ 1 _——

o + vpas(2) = Fp S, F-U; ds (16)

where

i (TEo &V
F=- (17

—»mag_l_ VJ_ XJH

S, is the cross section of the currents’ region (the region of
excitation).

After integration by parts with the use of the Maxwell
equations, one can obtain

/SF~U;§Lds:/S(fJ_-U;; + fii - Us, ) ds

3 2

4 ]{ 0. - (R;US,
{

J

)dl (18)

where [; is the contour surrounding the cross section S;, and
f 1|, are the vector functions

Zel
J — — —
fJ_H ( éJé) =1+ (19)
I
R; is the matrix
_ 0 iy X

i, is the unit vector along the external normal to the contour /,.
We have an analogous relation for the integral in the right-hand
side of (16).

Evidently, the spectral method includes the results obtained
from the reciprocity theorem and gives the contour integral as
an additional term in the equation usually obtained from the
reciprocity relation [1]. On the other hand, one can see that the
combination of the spectral method and the reciprocity relation
(see (42) in [4]) is superfluous. An important conclusion
follows from our analysis. One has two possibilities to describe
the mode excitation problem in waveguides if longitudinal
currents take place. The first possibility is based on using
delta functions caused by abrupt discontinuities of longitudinal
currents [see (15) and (17)]; the second is to use the contour
integral on the boundary of the currents’ region [see (18)].
We will conduct our investigations in this paper by taking the
contour integrals into consideration.

In the coupled-mode theory polarization currents have to
be considered. For dielectric guide structures we have an
electrical polarization current [1]. For more complex guide
structures we have both electrical and magnetic polarization
currents. One meets such a case in the analysis of mode
coupling in chirowaveguides [28]. To illustrate an application
of the spectral method for the coupled-mode theory, we
complete this section with an example of dielectric guide
structure.

Let us consider closed cylindrical waveguide filled by
homogeneous dielectric medium. Without any loss of gener-
ality, one can suppose to have vacuum with permittivity e,.
Normal modes of such a waveguide are classified as TE and
TM modes. Let an isotropic dielectric cylindrical insert with
permittivity ¢ be placed inside the waveguide (Fig. 1). Our
consideration will be restricted to one insert, but it may be
easily extended for a number of dielectric inserts.
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An excitation of normal modes of the basic system takes
place by means of the electrical polarization current [1]

7 =iwAekE 1)
where
Ac=c¢—¢,. 22)

The magnetic polarization current is equal to zero. By using
(9) and (10), one can obtain

i = iwAe{Z am(2) Em,

+ Ylaa() s, +a5(:)E,

4,9
(23)
—e Ae 2,
7 |l:zweo€ +A€{Z m(z)Em“
+ D _la0(2) By +a5()E |
3,9
(24)

On the basis of (15), (16), (18), (23), and (24), we have the
excitation equations for evanescent modes

day(2)
gz + Ypap(2)
w
= —— Ae
Nyp Js, 1’21’;

1 Ae 4 o
- Fp]i €0 + Ac g[aﬂ(z)Eﬂ“ + %(Z)E%]

(o, x B2 dl (25)
dags(z)
5 T wes(?)
iw
=—— [ Ae¢ Z
Ny Js, 8,5

’

In these expressions, we have ¥ = 1,2,---,p,--
1,2, , P, .

Fig. 1. A cylindrical waveguide with a dielectric insert.

One can easily obtain analogous equations for propagating
modes. We will characterize the role of the contour integrals
in processes of mode coupling as induced polarization effects.

III. MODE COUPLING AND ENERGETIC RELATIONS

In the coupled-mode theory, an analysis of power transfer
between modes is a very useful tool [1]-[3]. Such an analysis
is necessary also in our case, when induced polarization effects
are taken into account. Let us write the Maxwell operator (6)
in the next form [4]

MU = (ML + -B—Q) ] v2)
0z

where M, is the operator similar to the operator M but
operating only over transverse coordinates. By using such
a representation for inhomogeneous Maxwell equations (5)
and for the complex conjugated form of these equations, one
obtains

/ (MLTNT* + O(MLT)*] ds
SJ

‘ 8 Na,  =f0 2\
+/S] [(&QU>U +U<5;QU) ]ds

=/ (F-T*+0-F)ds.

J

(28)

For homogeneous boundary conditions, the first integral in
the left-hand side of (28) is equal to zero. The second integral
in the left-hand side of (28) corresponds to the variation of
power flow along the z-axis. Thus, in such a case, the variation
of power flow along the z-axis is determined by the excitation
integral in the right-hand side of (28).

However, another situation exists when the longitudinal
part of electromagnetic field is expressed by (10). Because of
inhomogeneous boundary condition, caused by the field l_f'ez,
the first integral in the left-hand side of (28) will not be equal
to zero. An exchange of power between interacting modes has
special features in such a case.

Let us consider two propagating modes p and ¢g. We have
on the basis of (9) and (10)

U=0.+0)=0Us+Ue (29)

where

Us = ap(z)(ﬁzu + ij”) + “q(z)([_jtu + [jqn)'
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When we substitute (29) into (28), we can see that the
second integral in the left-hand side of (28) is expressed as

O N\Nm. ~f0 = *
/SJ [(EQU>U +U<5Z-QU) }ds
d(apa;) d(aqaZ)

= Np dz dz

+ N, (30)
by using the relations of mode orthogonality. The integral
in the right-hand side of (28) is equal to zero. This is not
so difficult to show when (11) and the relation (21) for the
polarization current are taken into account.

Now we dwell on the first integral in the left-hand side
of (28). After some transformations using the procedure of
integration by parts, one can be convinced that

€1

where I, is the matrix (20). For electric polarization current
with the use of (11) and (24), we have, for two propagating
modes

Ae * = * * =
J = f; €O+A€[apaq(EpH X H +E‘1H H,)

+a;aq(E* X Hy + gy % H;L

il

) -, dl (32)

For the propagating modes, all vector products in (32) are
pure imaginary (one can be convinced with such an assertion
on the basis of further consideration). Therefore, as a result,
we can represent (28) as

d(a,pa*) d(a,qa,*)
N L N 4
Podz v dz
* * AE
= (4505 — apay) L L, €0+ Ae
(EZH x Hy, — By xHp,)-ilydl.  (33)

One can see that the term in the right-hand side of (33) is real.

Our analysis shows that because of an asymmetry in the field
structure of two propagating modes, we have an asymmetry in
the coupling of these modes. Owing to induced polarization
effects, one obtains exchange of active power not only between
two modes (even if the phase synchronism takes place) but
with all modes (propagating and evanescent) of the spectrum.
By extending the analysis of energetic relations on the infinite
functional space of propagating modes (see Mathematical
Appendix), instead of (33), one obtains

akak

S, i)

An asymmetry in mode coupling due to induced polarization
effects results in some changes in well-known theories of
mode-coupling processes.

(34)

Fig. 2. A system of two parallel dielectric waveguides.

IV. INDUCED POLARIZATION EFFECTS IN THE COUPLED-MODE
THEORY OF PARALLEL DIELECTRIC WAVEGUIDES

The general theory represented above enables us to extend
the coupled-mode theory [7] for the analysis of strongly guided
structures when large refractive index differences take place.

Let us consider a system of two parallel isotropic waveg-
uides, composed of waveguides a and b and uniform in z
direction (Fig. 2). Let €%(x,y) and €®(z,y) be the distributions
of the permittivity of isolated waveguides a and b, correspond-
ingly, and ¢(z,y) be that of the composite waveguide system.
We introduce the quantities

Ael(m, y) = 6('7"73/) - 61(%?}), 1= a)b (35)

where A€i(z,y) gives the perturbations in the permittivity
distribution, which has a nonzero value only inside the core
region.

The homogeneous Maxwell equations for the composite
waveguide system can be represented as two systems of
inhomogeneous equations

where

= fi (36)
MY = (iwe‘ 37)

—-Vx

VX wwp

o 2 E
ff=—iwle (0)

To solve (36), one can use the orthonormal basis of modal
transverse fields. If the basis of propagating modes of the guide
a is used, we have

(38)

=Tt = Z ()02, (=,v) 39)
and the excitation equation
dam(z) a 1 a o *

When we represent the fields by the basis of propagating
modes of the guide b

U =0 = Zb ()0, (z,) @1
we have the excitation equation
db,(z) b 1 Fb (b
— n(z)=— | F°- *ds. 2
S kb = g [P0 s @)

In (40) and (42). v%,,% and N2, N? are, correspondingly,
the propagation constants and the norms of modes. The
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functions F* and F® are defined on the basis of (17). For
our case of propagating modes, v%, and 4”, are pure imaginary
quantities.

Now we express the transverse part of the total field U,
approximately as linear combinations of two guided modes of
the waveguides o and b, respectively, [7]-[10]

UL~ An(2)0%  (2,9) + Ba(2)0% (2,0).  (43)

The longitudinal components of the total fields are also
linear combinations of the longitudinal components of two
guided modes

O = Am(2)D"Us, (2,9) + Bu(2)D'UY, (z,y).  (44)

The coefficients D* and D® are accepted to be equal to
unit in [8]. In the papers [2] and [7], these coefficients are
expressed as

(45)

One can see that the question concerning quantities of the
coefficients D* and D?, is still debatable [9], [10], [29], [30].

According to (10) and (11), the longitudinal electric field is
described as a series of propagating modes

EH = Z ag(z)l%”
=1

in the regions without sources (i.e., in the regions where
fﬁl = 0 or A€e’ = 0,i = a,b). Therefore, in our model of
the two modes representation, it is more correct to have two
kinds of expressions for the total longitudinal fields: the first
kind for the region where Ae® #£ 0, the second for the region
where Ae® # 0. It means that for the region restricted by the
cross section of the guide b, S, (where Ae® # 0) we have

U() & An(2)DT, + Ba(:)0" (46)

™| i

For another region that is restricted by the cross section of
the guide a, S, (where Ac® # 0), we obtain
O = A (2)U%, + Bu(2) DTS, .

The coefficients D* and D® are determined according to
(45).

On the basis of the procedure expounded in Section I
of the paper, taking into account the total field expressions
(43), (46), and (47), one obtains for (40) and (42) after some
transformations

dap,(2)

“7)

T = () + K An(2) + K32, Ba(2) - 48)
¥4
db,
o) o o)+ KB () + K Ans) @9
where
Koo — 1 J—’iw Ac® ﬁa . (Ea )* -+ E—a-
mm = Na | Se ATl T e A
A, 2, Afa
‘B (B )| d o 1 Aee
my - (Bmy) ] S+j§b € + Aec
[E_::Ln” % (ﬁ:nl)*]ﬁbdl} (50)

1 % 2 2, %
K =g { i [ Al - (En )+ B )
Sb

Ae® & 5
.ds+7{ —Z[Egﬂ X (anl)*].ﬁbdl}.
w €

One finds the coefficients K® and K?%¢ analogously by
replacing the indexes o and b and the indexes m and n.

In these expressions, I, and [, are the contours surrounding
the waveguide cross sections, correspondingly, S, and S;. n,
and n; are the normals to the contours [, and [, (Fig. 2).

Now we will use the traditional procedure of the Galerkin
method [26] to solve the approximate equation (43). On
the basis of the representation (39) and using orthogonality
relations, one obtains

(1)

am(2) = Am(2) + C% B, (2). (52)
Analogously, the use of (41) gives
bn(2) = Bp(2) + C8%, A (2). (53)

The coefficients C%, and C?%

nm

describe the mode overlap

1 2, 2,
Con = N2 / (QUp.) - (Ur,)" ds (54)
m JS
ba 1 ‘:'a, 36\
o =5 /S QU2 )~ (Th )*ds. (55)

After substituting (54) and (55) into (48) and (49), we have
the coupled-mode equations

%z—) =6“Ap(2) + k® By (2) (56)
. A
dBn(2) _ 8B, (2) + kP A (2) (57)
dz
where
8% = —4% + [Kor, — Cob K,
+C2 Ol (W — v/ (1 - C . Cie) (58)
8 =l + [KY, — Cin, K2,
+ O Cha (e — 5]/ (1 — Can o) (59)

kab = [K:'lrfn + C;lrfn(’y'z - fYﬁt - K’rl’)l,l')n)]/(l - C:;f)nczfrln)

(60)
ke = (Ko + O (Y = 1o = Kiin)1/ (1= GRG0,
(1)

The expressions for the propagating constants 6° and
8 and the coupling coefficients k® and k" have similar
forms to those obtained in [7]. Nevertheless, the coefficients
Koo K K9 are distinguished. The principal character
of these distinctions is displayed by taking into account the
contour integrals, which describe the singularities caused by
abrupt discontinuities of the permittivity.

In [7], Hardy and Streifer have shown that even in the
lossless case the coupling coefficients k°® and k*® are not
complex conjugates for nonidentical waveguides. It is caused
by nonidentity of Ae® and Ae’. An asymmetry in mode
coupling is expressed by the overlap integrals C%%, and C?2 .
In our analysis, we have demonstrated that taking into account
the induced polarization effects gives additional asymmetry in
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the mode coupling. This is considered when the TE-TM or
TM-TM coupling takes place.

Our theory is a necessary supplement to the improved
coupled-mode theory [7] for optical waveguides with large
refractive index differences.

V. ROLE OF GEOMETRIC EFFECTS AT MODE COUPLING IN
ISOTROPIC DISCRETELY INHOMOGENEOUS WAVEGUIDES

In this section, the geometric (induced polarization) ef-
fects on mode coupling in IDIW will be shown in another
application of the theory.

In different problems concerning IDIW structures, one can
use different types of sets of TE and TM modes: propagating
or evanescent modes of a hollow waveguide. If a model of
IDIW structure is used for the analysis of optical waveguides,
the cross section of hollow metallic waveguide has to be large
enough [21]-[23], and one has to use a set of propagating TE
and TM modes. On the other hand, the frequency regions of
millimeter or submillimeter IDIW correspond to near cutoff
frequencies of hollow metallic waveguide with the same
geometry of cross section. Moreover, complex and backward
modes in IDIW usually take place in the region of cutoff
frequencies of a corresponding hollow waveguide [15]-[20].
The analysis of millimeter or submillimeter IDIW has to be
based, therefore, on the sets of propagating and evanescent
modes.

Let us consider the IDIW structure shown in Fig. 1. For two
forward propagating modes (TE mode m with the propagation
constant v,, = i3, and TM mode n with the propagation
constant v, = 13,), by using the analysis in Section II, one
obtains

i am _ —iIBm+Cmnz C'm,n
dz [£79) o Cnm

, (s
—Zﬁn + Cnn Qg

1 Ace o S R
Kmn—N— 4 eo—i—AG(E x Hy, )%, dl

/ AEEmL l%

One can see that, in comparison with expressions usually
obtained for the coupling coefficients (the expressions for
Cinms Chns Chims and C1 ), we have additional terms caused
by the contour integrals (the expressions for F,, and K,,,).
For a wavelike solution of (62), which is determined by the
factor e~7%, one obtains

Y2+ [~i(Bm + Bn) + O + Ch o + Fly

(Zﬂm — Com ) (1B — Clhpy — F) + 02

(69)

(70)

71)
Here we suppose that N, = N,
Crom =

. In such a case, one has
=(Chn)™- (72)

It means that without the terms K,,,, the matrix of coupling
coefficients is skew—Hermitian. Analogous expressions can be
obtained for two propagating TM modes. In a similar way,
one can consider the TE-TM and TM-TM couplings of two
forward and backward propagating modes.

Let modes m and m be two conjugate TE evanescent modes
and modes n and n be two conjugate TM evanescent modes.
The propagation constants of modes are v,, = oy, Vm =
— Oy Y = Oy Vi = —0Qlp.

On the basis of (25) and (26), one obtains the coupled mode
equations shown in (73) at the bottom of the page.

Analogous to the coupling considered above for propagating
modes, some coupling coefficients in (73) also have terms with
the contour integrals.

Our analysis shows that both for propagating and evanescent

(62) modes, the matrix of the coupling coefficients is asymmetrical
because of induced polarization effects. For an arbitrary type
where . of two propagating modes. one can obtain, on the basis of the
Covrr = _ W Al ];?mL ) E;«n | ds (63) energetic relations from Section III
o ) d(aga))
nn = C (64) P dz q dz
cl = ﬂ Ac = apay(NgKop + NpKo) + apaq(NpKpy + NoKy,)
N Js, (74)
(E’M B Lt . _F: AEEnH EZII) ds where the coefficients K, and K, are determined by (69).
° 65) An anal.ysis of.the field structure of propagating modes in
1 Ac . R conventional guides (for example, in hollow waveguides [31])
F, = (En, x H}, ) -7,dl (66) shows that when the relation (72) takes place. the coefficients
Nu Ji, €0 + Ac K,, and K, are purely imaginary. Therefore, we have
J— !
C’mn - Cm_n + KTYLTL R R (67) N d(apa;) d(aqa;)
Clon ==~ | AeE,, - E3, ds (68) Pz T dz
m JS, = (a;aq — apa;)(Nprq + N K7,). (75)
427 —Qp + Cmm Cmrh Cmn Cmﬁ Am
dfam | _ Cim U + O Can Cra A (73)
dz Gy Onm Cnfn —Qp + Cnn Cnﬁ Gy,
an Ciam Cra Cin an + Ciz an
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VI. MobDE COUPLING IN A RECTANGULAR WAVEGUIDE WITH
A DIELECTRIC INSERT—SOME NUMERICAL ESTIMATES

To estimate the importance of taking into account induced
polarization effects in the mode coupling numerically, we
adduce here some numerical examples for a rectangular wave-
guide with a dielectric insert. We will analyze the structure
used in [16}, [L7]. Our results may easily be extended for
another structure of IDIW.

Let us consider the coupling of two forward propagating
modes: TE mode m and TM mode n. On the basis of the
known expressions for the fields in a rectangular waveguide
[31] and corresponding relations for the norm N, and N,,
one can obtain the expressions for the coupling coefficients
(63)—(70). With the use of the following designations

R PO
Emen — Emen — 76
e Tk ; (76)
et s, =1,2,--- ™ =0,1,2,--
kr —km ky + k7
sb _ M T Mo ad _ e T e
B = ke 5 n
sb _ 1n m ad _ 1n m
ky =ky — k', ky®=ky+ky (78)
we obtain
(a+t)/2
wAc-/ / Ezw_l_Er?ny)dxdy
(a—t)/2
] wuoActh { 2
=_ ky'
Z2ﬂmab[(l~s;n)2Jr(lc{,")zl k)
sin k™t
1 K™ -
( +cosk; a ki )
sin 2k h sin k't
) _ y m\2 _ m z
(1 _2k;”h ) + (K3Y) (1 coskl'a Tt )
(g4 Sk 79
2k
Ac (a+t)/2 €
o =i / / ( +E2 +—°_F? )
N, (a—t)/2 Yot AeT
- dx dy
. th Bn
=—1Ae—
' 62&5{[(’62)2"'(’“5)2]50
sin k™t sin 2k h
. (k;)2<1+cosk2a — )(1_ o )
[ knt 2kyh
e . sink"t sin2kgh
+ (ky) (1 coskza knt )(1 T Qk;}h
(k)2 + (k;})2 n Sin k2t
ﬁnm(l—coskwa knt )
. sian;h (80)
AT W
(a+t)/2
(a—t)/2
wAeth

) 2¢\[<ky)2 kR (O Pl
sbt

Moﬂn nim sb nk
v eo/g'm l:k k ( k km t

+ cos k"d

sin k;dt) (sin ksth  sink3?h
kadt ksbh kadh
S o Sin kst ad,, sin k%4t
- kz'ky (cos 5 —I—c:*‘;bt os kg Fad
sin k3°h N sin k34h 81)
R kadh (
Ac /(ath)/2
F,=-— v — E. H;, dy
(€0 + A€)N, ( (a—t)/2 s
3
0
|z=(a.—-t)/2
3
_ ( / En, H, dy)
0
|r (a+1t)/2
. Acth ,sin2kyh
B (eo + Ae)Bnab ( ) 2k"h
sin k]t 9 sink2't
. e OR n X n kn
(1 coskra ot )+(k }* cos Tt
i sin 2k h 82)
1= W

Ae

Konm == (€0 + Ae€)N,,

(at+t)/2
/ E. H), dx
(a—t)/2
h
0
h
_ (/ E, H,, dy\'
0 ,
Aey b2+ ()2 g
(km)m Noﬂn

sin kat
ksbt

ly=r

lo=(a—t)/2

le=(att)/2

=1
(€0 + A€)wab

[kmt sin k2. - coshmh(co kba

sin k2 dy

_ k_ad
COS k‘ dt

) — ky"h(cos kb sin k35t

sin k‘y‘dh
= ~gadf, . (83)
y

In (81) and (83), we have used the condition N,;, = N,,.
We have obtained (79)-(83) for k79" # 0, k;"v" # 0. For
k;* = 0, one obtains

2
¥ HoActh (1

"sin®® b
+ cos k%4a sin k27¢) ( k:;’h
. Y

Crm = — (84)

— €08 kmaSin k;"t)
20mab T krt
One can be convinced that if we substitute k;" = 0 into (81)
and (83), we have to divide the resulting expressions by two.

For numerical estimates, we will analyze a waveguide
structure composed of a rectangular ¢ x b waveguide and a
rectangular ¢ X h dielectric insert. We will consider K, -band
waveguide (a = 15.799 mm, b = 7.899 mm) and will analyze
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Normalized coefficients Fr, /3 (-e—e—0-), Ky /B(—x—x—x-) and normalized quantities Crnr/C?,, (0~ - —8-) Crapn/CL, . (=X~ —X— —X%=)

as functions of normalized width t/a of a dielectric insert; h = 0.2b, f = 1.1fc, Aefe, = 1.

the TE-TM mode coupling for two degenerated modes. These
are the modes with phase synchronism. To demonstrate the role
of the induced polarization effects, we calculate the coupling
coefficients for two propagating modes: TE;; and TMy;. In
Fig. 3, one can see normalized coefficients F,, /3, K, /B(8 =
B = Br) and normalized quantities C,,,,/C},, = 1+ F,/C...
and Cyn/CL = 1+ Ko /CY., as a function of normalized
width ¢/a of a dielectric insert when the height of an insert is
h = 0.2b. Analogous dependences as a function of normalized
height 1 /b for ¢t = 0.2a are shown in Fig. 4. The calculations
were made for the normalized differences of a permittivity
Ae/e, = 1 and for frequency f = 1,1f,, where f. is the cutoff
frequency of a hollow waveguide. It is evident that induced
polarization effects have considerable influence on values of
coupling coefficients. One can also note a weak dependence
of Cp,,/CY,, on normalized width ¢/a and a weak dependence
of Crur/CY,,, on both normalized width ¢/a and normalized
height h/b.

The relations between coupling coefficients have analogous
characters for below cutoff frequencies and do not adduce here.

Figs. 5-7 demonstrate how induced polarization effects
influence the values of propagation constants for TEq; —TMy;
modes coupling. The coupling of two propagating modes may
be correctly used for the analysis of dispersion characteristics

of IDIW if frequencies are far from cutoff frequency. For
near cutoff frequencies, one has to use the full mode coupling
analysis. The curves in Fig. 7, therefore, may be less correct in
comparison with the curves in Figs. 5 and 6. Nevertheless, one
can see an interesting tendency concerning an appearance of
backward waves caused by induced polarization effects (see
Fig. 7).

VII. CONCLUSION

An analysis of waveguide problems based on a solution of
full vector-wave equations is very important for many appli-
cations. To solve such problems, a new coupled-mode method
that takes into account induced polarization effects has been
proposed in this paper. This method may be a very powerful
tool for the analysis of mode coupling (both propagating and
evanescent modes) due to both the material and the geometric
effects. One can see that, in our method we solve the first-order
Maxwell equations for a full electromagnetic field, instead of
the second-order vector equations used separately for electric
and magnetic fields in [23] and [32].

Our method has arisen from the analysis of mathematical
incorrection that takes place when one uses the reciprocity
relations to solve an excitation problem of waveguides by
longitudinal currents [1]. The spectral method is used to avoid
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such an incorrection [4], [5]. This paper represents further
development of the spectral method and shows the importance
of taking into account singularities, caused by abrupt disconti-
nuities, in mode-excitation and mode-coupling problems. One
can see that such singularities may play a very important
role in both open-optical and closed-microwave waveguides.
Particularly, these geometric effects may be useful in the
explanation of the reasons that cause an appearance of complex
and backward waves. An asymmetry in mode coupling, caused
by induced polarization effects, gives a non—Hermitian matrix
of coupling coefficients for a finite number of coupled modes.
Nevertheless, this matrix is Hermitian for an infinite number
of coupled modes. Because of induced polarization effects,
full exchange of active power does not take place even for
phase synchronism of two propagating modes. In such a case,
one obtains exchange of active powet not only between two
modes but with all modes (propagating and evanescent) of the
spectrum.

In this paper, we have not adduced the full numerical
analysis of certain waveguide structures to corroborate our
theory. This may be the subject of further publications. The
corroboration of the theory is based on the analysis of some

waveguide problems and some numerical estimates and is,
evidently, sufficiently convincing.

MATHEMATICAL APPENDIX

A. On the Role of Singularities in Processes
of Waveguide Mode Interactions

The coupled-mode theory represents the self-matched prob-
lem with polarization currents dependent on the electromag-
netic fields. In such a case, abrupt discontinuities of longitudi-
nal polarization currents cause singularities. We have seen, for
an example of two propagating modes (see Section III), that
these singularities give an asymmetry in the mode coupling.
In this Appendix, we will extend the analysis for an infinite
number of modes and discuss the problems of convergence.

For propagating modes, we have

U=Us+Ue (A1)
where
o0 ~ o0 ~
Us=Us, +Us, = am(2)Um, + Y am(2)Um,.
m=1 m=1
(A2)
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‘Bil) /8 normalized propagation constant of the first wave with and without
taking into account induced polarization effects. b) (-e- -e- —-) 6;0} /3,

(A= X ) Bé’)/ 3 normalized propagation constant of the second
wave with and without taking into account induced polarization effects.
h = 0.2b f=11fc, Aefeo = 1.

Similar to the analysis conducted in Section III, one obtains

oo

d|am|?
_S_ N,, =J
— dz

(A3)
where
7= § Us(r 0L + BRI (A
l]

On the basis of (14) and (24), we have, after some transfor-
mations

(AS5)
m=1 m=1
Since E'mH = —(1/we,)Vy X f_I'ml, one obtains
1 Ae . -
J=— —_ (Vv H H}
o RV x A< AL
—(Vix HY)x H,]-,dl (A6)

where

H= an(z)Hm,.

m=1

Because H m, 1S a membrane function, the fields i 1 and
V. x H,| have coinciding phases. The integral (A6) is,

© L0
o
@ L
Bl BY

08—

0.6

Fig. 6. Normalized propagation constants (1 /8, B2/08) obtained from (80)
as a function of normalized height 2 /b. The curves are designed in the same
way as in Fig 5.t = 0.2a, f = 1.1fc, Aefeo = 1.

therefore, equal to zero and results in

o 2
Z NmM =0. (A7)
dz
m=1
Let
dai(z
a1(2) M ;i)
dag(z)
az(2) Ny P
a= : and EZ : (A8)
am(2) N dim(2)
™ dz

be the vectors in the finite measure space. These vectors are
correlated together by the infinite matrix C

b= Ca. (A9)
Because of (A7), we have
b 4+b-a-=0 (A10)
(Ca)a* =—a(Ca)". (A1D)
According to the analysis conducted in the paper
C;, # —C5,. (A12)

The matrix C is, therefore, a non-skew—Hermitian matrix.
Nevertheless, the expression (Al1) gives the condition of self-
conjugation of the infinite matrix C. The infinite matrix C is
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a skew—Hermitian [33]. We can rewrite (Al1) as

> > (Ciajar = =" ai(Cijay)*,

i=1 j=1 =1 j=1

i # 7.
(A13)

For a wavelike solution of (A9), which is determined by
the factor e~7#, one obtains

vd=ad (Al4)
where
N1a1
N2a2
d= : (A15)
Np.a.,
Because of (A10), we have
Y 4+y=0 (Al16)

therefore, v = .

One can make the following conclusion from our consider-
ation. For a finite number of propagating modes, we have an
exchange of active power not only between these propagating
modes but also with all continuum of evanescent modes.
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The relation (A7) is the condition of converge for the series
composed by power flows of propagating modes. Because
of an asymmetry in mode coupling, the matrix of coupling
coefficients is non—-Hermitian. Nevertheless, the infinite matrix
of coupling coefficients is self-conjugated [see (Al11)]. An
asymmetry in the coupling of propagating modes, caused by
singularities, does not give complex modes in the spectrum.
One can see that this spectrum contains only propagating
modes [see (A16)].

One can carry out the analysis of interaction pairs of
evanescent modes in a similar way. In this case, a finite number
of pairs of evanescent modes will be exchanged by power also

with all continuum of propagating modes.
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